miércoles, 24 de abril de 2013

22. La fórmula maravillosa del tonelero

    Profe, hay una fórmula maravillosa: la de la capacidad de un tonel. Yo creía que era una chapuza de fórmula aproximada para toneleros..., pero resulta que da el volumen exacto de prismas, cilindros, pirámides (incluso truncadas), conos (incluso truncados), esferas, elipsoides (balones de rugby), casquetes de paraboloides (antenas de telecomunicación), zonas de hiperboloides (chimeneas de centrales térmicas), etc. ¿Y por qué en vez de Matemáticas no estudiamos Tonelería?
    Pepe Chapuzas se había topado con la fórmula de Simpson:  h·(A+B+4·C):6 , donde h es la altura del tonel, y A, B y C son las áreas de las secciones alta, baja y central del tonel. La fórmula sirve también para calcular muchas superficies planas (siendo entonces las secciones A, B y C longitudes de segmentos).
    Calcula los volúmenes y las áreas siguientes (comprueba que la fórmula tradicional y la de Simpson coinciden en cada caso) y envíame la solución en un documento por correo electrónico.

No hay comentarios:

Publicar un comentario en la entrada